Finden Sie schnell gasheizung kosten für Ihr Unternehmen: 46 Ergebnisse

Stapelsäulensysteme

Stapelsäulensysteme

Stapelsäulen werden verwendet, um zumeist flächenartige, in den Umrissen komplizierte Bauteile in Transportgestellen zu transportieren oder im Pufferlager zu speichern. Wir unterscheiden je nach Art der Stapelung in Horizontale, Vertikale, Diagonale, über Kopf ausgelegte Säulensysteme. In Transportbehältern bieten diese Aufnahmesysteme die Möglichkeit, auf geringem Platz eine maximale Packdichte zu erzielen. Dabei kann die Teilung fest oder umschaltbar ausgeführt werden und ist abhängig vom Platzbedarf der Bauteile und der zu erzielenden Packdichte. Aufgrund ihrer hohen Stabilität und der genauen Funktionsweise werden so ausgestattete Ladungsträger meist in automatisierten Prozessen zum Beispiel mit Robotern be- und entladen. Die Klinken, werden von uns aus Metall hergestellt und zum Schutz der Werkstücke mit Kunststoff beschichtet oder umspritzt und werden entweder schwerkraft- oder federbetätigt zurückgeholt.
Wärmepumpen

Wärmepumpen

Wärmepumpen nutzen sehr effizient die Edelenergie Strom und entziehen der Natur die gespeicherte Sonnenenergie. Somit können Sie bis zu 50% gegenüber einer konventionellen Heizung, Kosten sparen. In anbetracht dessen, dass der Strompreis sehr stabil ist, gibt es bei Öl und Gas große differenzen. Es ist uns nicht mehr möglich zuverlässig hier Energieeinsparungen zu berechnen. Eine Wärmepumpe wird aber nicht immer nach den Betriebskosten ausgewählt, sondern einfach wegen der Tatsache, dass mit der Umweltenergie geheizt wird, die vor der Haustüre ist. Es wird lediglich die Elektrische Energie transportiert, und das geht per Kabel. Auch benötigt eine Wärmepumpe keinen Lagerraum für den Brennstoff. Als Energiequelle wird die Außenluft, das Erdreich oder das Grundwasser verwendet. Wenn Sie neu bauen wollen und eine Heizleistung von ca. 10KW benötigen, reicht eine Grundfläche von 1m²! (Vorausgesetzt, Sie haben Sich für eine Tiefensonde entschieden) Der BWP (Bundesverband Wärmepumpe e.V.) hat folgende Info zu den gemessenen vs. errechneten Jahreszahlen veröffentlicht (siehe PDF). Hier gibt es immer wieder Missverständnisse, warum die Installierte Wärmepumpe nicht die berechneten Leistungszahlen erbringt, bzw. nicht erbringen kann. Merke: Wärmepumpen können bis zu 60°C im Vorlauf des Heizsystems erbringen. Beim Brauchwasser sind es lediglich 47°C. Heißeres Brauchwasser wir mit Durchlauferhitzern oder einem Integriertem Heizstab bereitet! Das bei dieser Betriebsart die Leistungszahlen sinken, versteht sich von alleine. Wenn Sie weitere Fragen zur Wärmepumpe haben, stehen wir Ihnen gerne in einem persönlichen Gespräch nach Vereinbarung Rede und Antwort
Wärmepumpen

Wärmepumpen

Die neue Generation von Wärmepumpen ist noch effektiver. Sie werden staunen, wieviel Energie aus Luft, Boden oder Grundwasser für Ihre Heiz- und Brauchwasserbereitung zur Verfügung stehen.
Wärmepumpen

Wärmepumpen

Als Meisterbetrieb des Heizungsbauerhandwerks bieten wir herstellerunabhängige Wärmeerzeuger im Raum München und Oberbayern an. Unsere Spezialisierung liegt auf Wärmepumpen. NEU- UND BESTANDSANLAGEN - KESSELTAUSCH - BERATUNG - PLANUNG LIEFERUNG - MONTAGE - WARTUNG - REPARATUR
Wärmepumpen

Wärmepumpen

Systeme zur Nutzung regenerativer Energiequellen sind gefragt – vor allem seit die Preise für Öl und Erdgas steigen. Eine fast unerschöpfliche Wärmequelle ist zum Beispiel die Sonnenenergie, die in der Umgebungsluft, dem Erdreich und dem Grundwasser gespeichert ist. Die Wärmepumpe bietet die Möglichkeit, diesen sich ständig erneuernden Vorrat an innerer Energie der Umgebung für Heizzwecke nutzbar zu machen. Ein Wärmepumpen-System ist hocheffizient, besteht aus nur 2 Geräten (eines außerhalb, eines innerhalb des Hauses) und kann ohne weiteres in das bestehende Heizungssystem eingebunden werden. Am effizientesten arbeiten sie, wenn die Temperatur im Heizkreislauf möglichst niedrig ist – zum Beispiel 35 °Celius. Damit sind sie für Niedertemperatursysteme wie Fußboden- und Wandheizungen bestens geeignet. So senken Sie Ihre Energiekosten und reduzieren den Kohlendioxid-Ausstoß. Innerhalb eines Jahres sparen Sie mittels einer Wärmepumpe zwischen 30 und 50% Ihrer Heizkosten, normale Wetterverhältnisse vorausgesetzt. Damit amortisieren sich die Anschaffungs- und Installationskosten innerhalb kurzer Zeit.
Wärmepumpe

Wärmepumpe

Was ist eine Wärmepumpe Bei Wärmepumpen wird kein Brennstoff verbrannt, sondern mithilfe elektrischen Stroms die Umgebungswärme zur Gebäudebeheizung und Trinkwassererwärmung nutzbar gemacht. Bei der Umgebungswärmequelle werden drei Arten unterschieden: Luftwärmepumpen Luftwärmepumpen nutzen die Außenluft.
Mit Strom aus erneuerbaren Energien grünen Wasserstoff machen

Mit Strom aus erneuerbaren Energien grünen Wasserstoff machen

Reines Wasser, Strom aus regenerativen Energiequellen und H-TEC SYSTEMS: Mehr braucht es für die Herstellung von grünem Wasserstoff nicht. Für diese Herausforderung haben wir den PEM-Elektrolyse-Prozess immer weiter optimiert und die Produktivität unserer Anlagen stetig erhöht. Das Ergebnis ist ein Technologiesprung, der die Dekarbonisierung verschiedenster Industriezweige nicht erst in Zukunft ermöglicht, sondern bereits heute. Besonders die Wasserstofferzeugung und -speicherung vor Ort ist ein entscheidender Schritt zur Energieautarkie. Mit 100 % erneuerbarem Strom gewonnen, leistet der grüne Wasserstoff einen wichtigen Beitrag zur Senkung der CO₂-Emissionen. Ziel in Deutschland ist es, diese bis zum Jahr 2030 um 55 % bzw. 95 % bis ins Jahr 2050 zu reduzieren. Mit „blauem“ oder „grauem“ Wasserstoff ist dies nicht umsetzbar, da er mithilfe fossiler Energieträger erzeugt wird. Die PEM-Elektrolyse-Technologie von H-TEC SYSTEMS ist speziell für die Herstellung von grünem Wasserstoff und damit die Sektorenkopplung konzipiert. Das schafft Synergien. Und jede Menge Perspektiven. GRÜNER WASSERSTOFF – ANWENDUNGEN UND EINSATZGEBIETE CO₂ freie Mobilität Mobilität hinterlässt Spuren – zumindest bisher. Wasserstoff aus unserer PEM-Elektrolyse ist direkt für Brennstoffzellen nutzbar und damit emissionsfrei und klimaverträglich. Das macht Straßen- wie Fernverkehr sauberer und leiser. Und ermöglicht durch das Power-to-X Verfahren sogar die Gewinnung von Kraftstoffen für Flugzeuge oder Schiffe. Rohstoff für industrielle Produkte Mischt man Kohlendioxid (CO₂) und Wasserstoff (H₂), entsteht ein hochwertiges Synthesegas. Ein zukunftsweisendes Verfahren, um CO₂-Emissionen zu binden, und daraus chemische Bausteine für Chemikalien, Polymere oder synthetische Treibstoffe herzustellen. Selbst die Produktion von Ammoniak (NH₃), Hauptbestandteil für Mineraldünger, ist mit klimafreundlicher Wasserstofferzeugung möglich. Dekarbonisierung industrieller Prozesse Die Herstellung und Verarbeitung von Rohstoffen und Gütern benötigt große Mengen Energie. Wasserstoff kann die CO₂-Bilanz dieser Prozesse verbessern, z. B. beim Heizen von Brennöfen der Glas-, Zement- oder Stahlproduktion. Eine Einspeisung und Speicherung im Erdgasnetz bis 10 % und mehr ist möglich. Energiespeicherung zum Stromnetzausgleich Überschüssiger Strom und Wasser werden via Elektrolyse in grünen Wasserstoff umgewandelt. Der lässt sich komfortabel und über einen langen Zeitraum im Erdgasnetz oder in Tanks speichern. Dekarbonisierung häuslicher Energiesysteme Beim Elektrolyseprozess entsteht nicht nur Wasserstoff, sondern als Nebenprodukt mit ca 50°C auch Wärme. Wertvolle Energie, die ins Fernwärmenetz eingespeist, oder direkt zum Beheizen von Wohn- und Geschäftsräumen genutzt werden kann. Auch Brennstoffzellenheizungen profitieren vom Prinzip dieser Kraft-Wärme-Kopplung.
Sole / Wasser Wärmepumpe mit Ringgrabenkollektor

Sole / Wasser Wärmepumpe mit Ringgrabenkollektor

Beim Ringgrabenkollektor werden die Solerohre in Schleifen in einen Graben mit zum Beispiel 2 m Breite und 1,5 m Tiefe verlegt. Je nach Bodenart, Heizlast und Klima ist für einen typischen EFH-Neubau ein Graben von 40 – 80 m Länge notwendig. Dabei hat der Graben die Form eines Rings, so dass die Solerohre erst das Haus verlassen, dann im optimalen Fall einmal rund um das Grundstück verlaufen und am Ende wieder ins Haus geführt werden. Im Vergleich zu einer Flächenkollektor-Auslegung nach VDI 4640 wird wesentlich mehr Erdreich erschlossen. Vorteile: - Erdwärme auf kleinen Grundstücken wird möglich - mehr Effizienz durch Optimierung aller Komponenten - individuell geplante und berechnete Auslegung - keine Verbindungen außerhalb des Hauses - einfache schnelle Verlegung, auch do-it-yourself möglich - Mitte des Grundstücks bleibt frei - weniger Baggerstunden, weniger Aushubmenge
Industriehydraulik / Aggregat

Industriehydraulik / Aggregat

Von Kleinaggregaten bis zur zentralen Ölversorgung, vom Prototyp bis zum Serienauftrag realisieren wir in diesem Bereich Kundenwünsche. Unsere Aggregate sind auch bei speziellen Anforderungen hinsichtlich Betriebsmedium, Geräuschpegel, Druck- oder Temperaturbereich und Baugröße immer die richtige Wahl. Vorteil für unsere Kunden: Sie erhalten eine ganzheitliche Systemlösung inklusive Steuerung. Um ihre Instandhaltung und Ersatzteilbevorratung zu optimieren verwenden wir gerne Komponenten die Sie bereits im Einsatz haben. Technische Merkmale: Betriebsmedium Mineralöl, HFA, HFB, HFC, HFD, ATF, Bio-Öl, Skydrol Behälter bis 20.000 Liter, in Aluminium, Stahl oder Edelstahl E-Motorleistung 1.000 kW und mehr Pumpenleistung bis 5.000 Liter pro Minute Druckbereich bis 700 bar Wirkmedien Hochdruck bis 4000bar Speichertechnik Kolben- und Blasenspeicher Filtration Druck- und Nebenstromfiltration Kühltechnik Öl-/ Luftkühlung oder Anschluß an Zentralkühlung Elektrokomponenten in UL, CSA
Industriehydraulik / Aggregat

Industriehydraulik / Aggregat

Von Kleinaggregaten bis zur zentralen Ölversorgung, vom Prototyp bis zum Serienauftrag realisieren wir in diesem Bereich Kundenwünsche. Unsere Aggregate sind auch bei speziellen Anforderungen hinsichtlich Betriebsmedium, Geräuschpegel, Druck- oder Temperaturbereich und Baugröße immer die richtige Wahl. Vorteil für unsere Kunden: Sie erhalten eine ganzheitliche Systemlösung inklusive Steuerung. Um ihre Instandhaltung und Ersatzteilbevorratung zu optimieren verwenden wir gerne Komponenten die Sie bereits im Einsatz haben. Technische Merkmale: Betriebsmedium Mineralöl, HFA, HFB, HFC, HFD, ATF, Bio-Öl, Skydrol Behälter bis 20.000 Liter, in Aluminium, Stahl oder Edelstahl E-Motorleistung 1.000 kW und mehr Pumpenleistung bis 5.000 Liter pro Minute Druckbereich bis 700 bar Wirkmedien Hochdruck bis 4000bar Speichertechnik Kolben- und Blasenspeicher Filtration Druck- und Nebenstromfiltration Kühltechnik Öl-/ Luftkühlung oder Anschluß an Zentralkühlung Elektrokomponenten in UL, CSA
Onsite Elektrolyseanlagen im Betreibermodell

Onsite Elektrolyseanlagen im Betreibermodell

Für die Onsite-Versorgung Ihres Standortes bieten wir Konzeption, Umsetzung und Betrieb von Produktionsanlagen mit Elektrolyse aus einer Hand. - Optimierte Betriebsstrategie angepasst an individuellen Kundenbedarf / Standortsituation - Sicherstellung der erforderlichen Wasserstoffqualität nach Kundenwunsch - Backup-Versorgung durch Tyczka Hydrogen per Traileranlieferung aus dem Produktionsnetzwerk
WEH® Gasfilter – Für maximalen Schutz Ihrer Gasanlage

WEH® Gasfilter – Für maximalen Schutz Ihrer Gasanlage

Bei der Befüllung mit gasförmigen Medien und dem Einsatz in Gasemischanlagen sind saubere, gefilterte Gase Grundvoraussetzung für die einwandfreie Funktion der gasetechnischen Komponenten. Schmutzpartikel im Gasstrom können Armaturen und Dichtungen beinträchtigen oder sogar beschädigen und zu Undichtheiten führen. Um den Gasstrom von belastenden Bestandteilen zu reinigen und somit die Lebensdauer der Komponenten zu erhöhen sowie Wartungskosten zu verringern, hat WEH ein ganzes Produktprogramm an Partikel- und Feinfilter zum Einbau in Gasanlagen entwickelt. Die Filter eignen sich für zahlreiche technische Gase sowie verschiedenste gasförmige und flüssige Medien. WEH® Filter reinigen den Gasstrom zuverlässig und sicher von den verunreinigten Bestandteilen im Gas und Rohrleitungsnetz. Je nach Ausführung sind Filterelemente von 1 bis 40 Mikron verbaut, um so die nachgeschalteten Anlagenkomponenten zu schützen. Alle Filter sind aus hochwertigen Materialien gefertigt und sind entweder mit einem einfach zu reinigenden, wiederverwendbaren Filterelement oder in einer anderen Filterausführung mit einem auswechselbaren Filterelement ausgestattet. Es stehen verschiedene Bauarten und -größen zur Verfügung. Die WEH® Partikel Filter TSF2 und TSF4 sind wahlweise als Rund- oder als T-Filter erhältlich und mit verschiedensten Anschlusskonfigurationen erhältlich, mit Rohrverschraubung, Innengewinde oder Außengewinde. Die Filter sind sehr wartungsfreundlich. Das Filterelement lässt sich einfach entnehmen und kann nach der Reinigung wiederverwendet werden. Für maximale Partikelrückhaltekapazität stehen die Koaleszenzfilter TSF2 zur Verfügung. Das Medium strömt durch den Filter, wobei die langsamer fließenden Bestandteile wie Öl, Wasser und andere flüssige Aerosole Tropfen bilden und auf den Boden des Filters sinken, wo sie über den Ölauslass ausgeschieden werden können. Die Feinfilter zeichnen sich durch ihre Effektivität von ca. 99,9 % > 0,3 Mikron aus. Geprüfte Sicherheit Moderne und einzigartige Prüfeinrichtungen gewährleisten eine umfassende Prüfung der WEH® Filter, von der Designphase bis zur Serienproduktion. Alle Produkte entsprechen der Druckgeräterichtlinie (PED). Darüber hinaus werden Komponenten für Sauerstoff einer Sauerstoffausbrennprüfung unterzogen. Seit 1983 hat sich WEH im Gasebereich etabliert. Namhafte Gasehersteller vertrauen auf die sicheren & zuverlässigen Gasekomponenten von WEH, Made in Germany. Seither hat WEH sein Produktprogramm kontinuierlich, entsprechend den hohen Anforderungen der Gasindustrie erweitert. Das Sortiment umfasst Hochdruckventile, Vakuum-Überdrucksicherungen zum Schutz von Vakuumpumpen, Fein- und Partikelfilter, Rückschlagventile zum Einbau in Gaseanlagen sowie Fülladapter zur Abfüllung verschiedenster Gase.
Wasserstoff im Haus: Heute schon Realität, morgen allgegenwärtig

Wasserstoff im Haus: Heute schon Realität, morgen allgegenwärtig

Die Verfügbarkeit von Wasserstoff in jedem Haushalt ist eine Vision der Wasserstoffwirtschaft. Erste Systeme für private Liegenschaften werden aber bereits heute realisiert. Durch die Erzeugung von grünem Strom mit einer PV-Anlage kann im Sommer der Speicher gefüllt werden. Dieser Wasserstoff dient im Winter als Brennstoff für die Brennstoffzelle. Diese versorgt bei einer geringen PV-Leistung das System mit dem nötigen Strom. Die Integration eines Wasserstoffsystems ermöglicht eine ganzheitliche Vernetzung des Energiesystems. Photovoltaikanlagen, deren EEG-Förderung endet, haben das Potenzial, ihren Überschussstrom in Elektrolyseure zu leiten. Diese verwandeln den Strom in Wasserstoff, welcher als nachhaltige Energiequelle genutzt werden kann. Die Zukunft zuhause haben Vorreiter in der Energiewende sein mit einem Wasserstoffenergiesystem Modular und skalierbar MSR-Wasserstoffsysteme können in der Zukunft problemlos erweitert werden Die Energie-Zukunft bereits Zuhause haben. Wasserstoffsysteme für kleine Liegenschaften ermöglichen eine hohe Energieautarkie und bieten Ausbaumöglichkeiten in der Zukunft.
Haustüren nach Maß

Haustüren nach Maß

Ein respektvoller Umgang mit Mensch und Natur ist die Basis für ein gesundes Miteinander. Bei der Boneberger Schreinerei legen wir großen Wert auf Nachhaltigkeit und Umweltbewusstsein. Wir sind uns der Verantwortung gegenüber kommenden Generationen bewusst und setzen uns aktiv für einen schonenden Umgang mit den Ressourcen ein.
Aluschränke für Gasdruck Regel- und Messanlagen sowie Leichtbau-/Alu-Container für Gas-Analyse-Systeme (PGC)

Aluschränke für Gasdruck Regel- und Messanlagen sowie Leichtbau-/Alu-Container für Gas-Analyse-Systeme (PGC)

Aluschränke für Gasdruck Regel- und Messanlagen sowie Leichtbau-/Alu-Container für Gas-Analyse-Systeme (PGC).
Reinigung von Industrieabluft

Reinigung von Industrieabluft

Am Beispiel einer Industrieabluftanlage (CS 40 bis 5600) soll kurz und anschaulich das Funktionsprinzip unserer katalytischen Abluftreinigung dargestellt werden. Funktionsskizze CS Modelle 90-5600, Beispielmodell 350 Die mit Schadstoffen belastete Abluft wird durch eine Absaugvorrichtung oder durch Konvektion in den Katalysator eingeleitet. Bei Abgastemperaturen unterhalb von 200°C wird der Luftstrom durch einen Elektrowärmetauscher auf die für den katalytischen Nachverbrennungsprozess nötigen 200°C aufgeheizt. Nach der Aufheizung wird zunächst eine katalytische Opferschicht durchströmt, welche pro Jahr zwei mal zu wechseln ist (liegt ein extrem hoher Anteil an Schwefel oder Schwermetallen im Abgas vor, kann sich die Zahl der nötigen jährlichen Wechsel erhöhen). Nach der Opferschicht wird der Wabenkatalysator durchströmt. Die in der Anlage entstehenden Druckverluste werden durch einen Zugventilator bzw. ein Venturirohr am Katalysatorausgang ausgeglichen. Die zur Oxidation der Schadstoffe nötige Sauerstoffmenge wird entweder dem Abgasstrom entzogen oder durch regelbare Klappen eingeleitet. Der Austausch der Katalysatoren und der Opferschicht ist durch die Verwendung standardisierter Bauteile vor Ort schnell und einfach mit Standardwerkzeug möglich. Bei der Auslegung der Baugröße der katalytischen Abluftreinigung muss sowohl der Gesamtvolumenstrom (Nm³/h), als auch der Schadstoffstrom (g/min) beachtet werden. Der Gesamtvolumenstrom setzt sich dabei aus dem Normvolumenstrom der Abluft und dem zugeführten Kühlluftstrom zusammen. Beim Kühlluftstrom handelt es sich um die Luftbeimengung die zur Erhöhung der Luftsauerstoffkonzentration, oder Begrenzung der Katalysatortemperatur benötigt wird. Neben dem Gesamtvolumenstrom ist der Schadstoffstrom bei der Auslegung zu beachten. Der Katalysator ist dabei nach dem Maximalwert der flüchtigen Kohlenwasserstoffe auszuwählen. Werden beispielsweise in einem Brennzyklus von 10 h durchschnittlich 18 g/min frei und der Volumenstrom liegt unterhalb von 90m³/h, ist eine CS 90 ausreichend. Wird allerdings in einem Zeitintervall von 1-2 Stunden ein Schadstoffstrom von ca. 20-40 g/min freigesetzt, ist eine CS 200 auszuwählen. Übersteigt der Schadstoffstrom die Maximalwerte, werden die Schadgase nur unvollständig oxidiert, oder es kommt zu einer Überhitzung des Katalysators. Auslegungsdiagramm Katalysatorgröße Checkliste Anlagenauslegung Industrie Auslegungsdaten CS Industrie-Kat..pdf .pdf Datei [63.9 KB] Sprache auswählen Industrieanlagen Biogasmotoren Druckversio